# Path Configuration from tools.preprocess import * # Processing context trait = "Kidney_Chromophobe" cohort = "GSE40911" # Input paths in_trait_dir = "../DATA/GEO/Kidney_Chromophobe" in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE40911" # Output paths out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE40911.csv" out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE40911.csv" out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE40911.csv" json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # The series title and summary indicate this dataset contains expression analysis data # It uses cDNA microarray platform enriched in gene fragments, so gene data is available is_gene_available = True # 2.1 Data Availability # Trait: tissue type indicates tumor vs non-tumor status (row 2) trait_row = 2 # Age: age at surgery available (row 4) age_row = 4 # Gender: gender data available (row 3) gender_row = 3 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert tissue type to binary: 1 for tumor, 0 for non-tumor""" if not isinstance(value, str): return None value = value.lower().split(": ")[-1] if "tumor" in value and "non" not in value and "adjacent" not in value: return 1 elif "adjacent" in value or "non" in value: return 0 return None def convert_age(value: str) -> float: """Convert age string to float value""" if not isinstance(value, str): return None try: age = float(value.split(": ")[-1]) return age except: return None def convert_gender(value: str) -> int: """Convert gender to binary: 1 for male, 0 for female""" if not isinstance(value, str): return None value = value.lower().split(": ")[-1] if value == "male": return 1 elif value == "female": return 0 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(selected_clinical)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # The row IDs look like ID numbers, not gene symbols # These need to be mapped to gene symbols for downstream analysis requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Preview the first few rows print("\nPreview of the annotation data:") print(json.dumps(preview_df(gene_metadata), indent=2)) # 1. ID is storing same type of identifiers as in gene expression data # GENE_SYMBOL is storing gene symbols prob_col = 'ID' gene_col = 'GENE_SYMBOL' # 2. Extract mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the mapped gene data print("Preview of gene expression data after mapping:") print("Shape:", gene_data.shape) print("\nFirst 5 gene symbols:") print(gene_data.index[:5].tolist()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples from various tissue types including kidney, lung, stomach and other organs, with both tumor and normal tissues." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)