# Path Configuration from tools.preprocess import * # Processing context trait = "Kidney_Chromophobe" cohort = "GSE42977" # Input paths in_trait_dir = "../DATA/GEO/Kidney_Chromophobe" in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE42977" # Output paths out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE42977.csv" out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE42977.csv" out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE42977.csv" json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # From the background information, we can see this is a microarray gene expression study is_gene_available = True # 2. Variable Availability and Data Type Conversion # For trait: Kidney_Chromophobe can be detected from tissue type in row 0 trait_row = 0 def convert_trait(value): if pd.isna(value) or ':' not in value: return None tissue = value.split(': ')[1].strip() # 1 for Kidney Chromophobe, 0 for others if tissue == "Renal Cell Carcinoma - Chromophobe": return 1 elif tissue in ["control", "Normal Lung"]: return 0 return None # Age and gender data not available in sample characteristics age_row = None gender_row = None convert_age = None convert_gender = None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These appear to be Illumina probe IDs (starting with ILMN_), not gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Preview the first few rows print("\nPreview of the annotation data:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Get mapping between probes and genes mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print preview of the mapped gene data print("\nPreview of gene expression data after mapping:") print(json.dumps(preview_df(gene_data), indent=2)) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples from various tissue types including kidney, lung, stomach and other organs, with both tumor and normal tissues." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)