# Path Configuration from tools.preprocess import * # Processing context trait = "Kidney_Chromophobe" cohort = "GSE95425" # Input paths in_trait_dir = "../DATA/GEO/Kidney_Chromophobe" in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE95425" # Output paths out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE95425.csv" out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE95425.csv" out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE95425.csv" json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # From the background info, it's clear this is a transcriptome study # "Comprehensive transcriptome studies..." suggests gene expression data is available is_gene_available = True # 2.1 Data Availability # For trait: In cell 1, all samples are "Normal kidney tissue", but this is a constant # In cell 2, we have sampling depth which can serve as a proxy for kidney regions trait_row = 2 # For age and gender: Not available in sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert sampling depth to binary: cortex = 0 (superficial) medulla/cortex_medulla = 1 (deeper) """ if not value: return None value = value.split(': ')[-1].lower() if 'cortex' in value and 'medulla' not in value: return 0 elif 'medulla' in value: return 1 return None def convert_age(value: str) -> float: return None def convert_gender(value: str) -> int: return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of processed clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These IDs are from Illumina microarray platform (ILMN prefix) # They need to be mapped to official gene symbols for standardization requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Preview the first few rows print("\nPreview of the annotation data:") print(json.dumps(preview_df(gene_metadata), indent=2)) # The 'ID' column in gene_metadata matches the ILMN identifiers in gene expression data # The 'Symbol' column contains the gene symbols we want to map to mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # Apply the gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the results print("First 20 gene symbols:") print(gene_data.index[:20].tolist()) print("\nNumber of genes:", len(gene_data)) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from normal kidney tissue samples, comparing cortex and medulla regions." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)