# Path Configuration from tools.preprocess import * # Processing context trait = "Kidney_stones" cohort = "GSE73680" # Input paths in_trait_dir = "../DATA/GEO/Kidney_stones" in_cohort_dir = "../DATA/GEO/Kidney_stones/GSE73680" # Output paths out_data_file = "./output/preprocess/3/Kidney_stones/GSE73680.csv" out_gene_data_file = "./output/preprocess/3/Kidney_stones/gene_data/GSE73680.csv" out_clinical_data_file = "./output/preprocess/3/Kidney_stones/clinical_data/GSE73680.csv" json_path = "./output/preprocess/3/Kidney_stones/cohort_info.json" # Get paths for relevant files soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_path) # Get unique values for each clinical feature sample_chars = get_unique_values_by_row(clinical_data) # Print dataset background information print("Background Information:") print(background_info) print("\nClinical Features Overview:") print(json.dumps(sample_chars, indent=2)) # 1. Gene Expression Data Availability # Yes, this is a microarray gene expression study comparing Randall's Plaque vs normal tissue is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 2 # Can infer stone status from tissue type age_row = None # Age not available gender_row = 0 # Gender is available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert tissue type to binary stone status (0: no stones, 1: stone former)""" if not value or ":" not in value: return None value = value.split(":")[1].strip().lower() if "control patients without any kidney stone" in value: return 0 elif "from calcium stone" in value: return 1 return None def convert_gender(value: str) -> int: """Convert gender to binary (0: female, 1: male)""" if not value or ":" not in value: return None value = value.split(":")[1].strip().lower() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=None, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical features print("Preview of processed clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get gene expression data genetic_data = get_genetic_data(matrix_path) # Preview raw data structure print("First few rows of the raw data:") print(genetic_data.head()) print("\nShape of the data:") print(genetic_data.shape) # Print first 20 row IDs to verify data structure print("\nFirst 20 probe/gene identifiers:") print(list(genetic_data.index)[:20]) requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_path) # Preview annotation data structure print("Gene annotation data preview:") print(preview_df(gene_metadata)) # 1. Identify the mapping columns: ID for probe identifiers, GENE_SYMBOL for gene symbols # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # 3. Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview mapped gene data print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) print("\nShape after mapping:") print(gene_data.shape) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove biased demographic ones # The function will print detailed distribution information trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save metadata about dataset quality # The validation is affected by if the trait is biased, if the data has been filtered out, etc. note = "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples." is_usable = validate_and_save_cohort_info(is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)