# Path Configuration from tools.preprocess import * # Processing context trait = "LDL_Cholesterol_Levels" cohort = "GSE111567" # Input paths in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels" in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE111567" # Output paths out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE111567.csv" out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE111567.csv" out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE111567.csv" json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # Based on the background info mentioning HumanHT-12 v4 microarray and gene expression analysis, # this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # Trait (LDL cholesterol) is not directly available in clinical features trait_row = None # Age is not available in clinical features age_row = None # Gender is available at index 0 gender_row = 0 def convert_gender(x): if x is None: return None value = x.split(': ')[1].strip() if value.upper() == 'F': return 0 elif value.upper() == 'M': return 1 return None # Convert functions for completeness though trait and age not available def convert_trait(x): return None def convert_age(x): return None # 3. Save Metadata # Perform initial filtering and save cohort info validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction # Skip since trait_row is None, indicating clinical data is not usable for our purpose # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # These are Illumina probe IDs, not standard human gene symbols # They need to be mapped to official HGNC gene symbols for analysis requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview column names and first few values print("Gene Annotation Preview:") print(preview_df(gene_annotation)) # 1. Observe gene identifiers: # Gene expression data uses 'ILMN_' probe IDs, which match the 'ID' column in annotation # Gene symbols are in the 'Symbol' column of annotation # 2. Extract mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') # 3. Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Create a minimal dataframe for validation purposes df_for_validation = pd.DataFrame(index=gene_data.index) df_for_validation[trait] = None # Add trait column with all missing values note = "The dataset contains gene expression data from peripheral blood mononuclear cells measured with HumanHT-12 v4 microarray but lacks LDL cholesterol level measurements." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False, is_biased=True, # Missing trait data is considered extreme bias df=df_for_validation, note=note )