# Path Configuration from tools.preprocess import * # Processing context trait = "LDL_Cholesterol_Levels" cohort = "GSE181339" # Input paths in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels" in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE181339" # Output paths out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE181339.csv" out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE181339.csv" out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE181339.csv" json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json" # Get paths for relevant files soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_path) # Get unique values for each clinical feature sample_chars = get_unique_values_by_row(clinical_data) # Print dataset background information print("Background Information:") print(background_info) print("\nClinical Features Overview:") print(json.dumps(sample_chars, indent=2)) # 1. Gene Expression Data Availability # Yes - the background information mentions RNA extraction, microarray experiments is_gene_available = True # 2.1 Data Availability # LDL levels can be inferred from group (MONW has high LDL) trait_row = 1 # Age data appears to be sample IDs rather than actual ages age_row = None # Gender data is available in row 0 gender_row = 0 # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None # Extract value after colon x = x.split(': ')[-1].strip() # MONW group has high LDL, other groups have normal LDL if x == 'MONW': return 1 elif x in ['NW', 'OW/OB']: return 0 return None def convert_age(x): # Not used since age data unreliable return None def convert_gender(x): if not isinstance(x, str): return None x = x.split(': ')[-1].strip() if x.lower() == 'woman': return 0 elif x.lower() == 'man': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview data print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Get gene expression data genetic_data = get_genetic_data(matrix_path) # Preview raw data structure print("First few rows of the raw data:") print(genetic_data.head()) print("\nShape of the data:") print(genetic_data.shape) # Print first 20 row IDs to verify data structure print("\nFirst 20 probe/gene identifiers:") print(list(genetic_data.index)[:20]) # From the pattern of gene identifiers being simple numbers like '7', '8', '15', etc. # These appear to be probe IDs rather than human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_path) # Preview annotation data structure print("Gene annotation data preview:") print(preview_df(gene_metadata)) # Get mapping between gene IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview gene data print("\nFirst few rows of gene expression data:") print(gene_data.head()) print("\nShape of gene data:") print(gene_data.shape) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove biased demographic ones # The function will print detailed distribution information trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save metadata about dataset quality # The validation is affected by if the trait is biased, if the data has been filtered out, etc. note = "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples." is_usable = validate_and_save_cohort_info(is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)