# Path Configuration from tools.preprocess import * # Processing context trait = "LDL_Cholesterol_Levels" cohort = "GSE28893" # Input paths in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels" in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE28893" # Output paths out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE28893.csv" out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE28893.csv" out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE28893.csv" json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json" # Get paths for relevant files soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_path) # Get unique values for each clinical feature sample_chars = get_unique_values_by_row(clinical_data) # Print dataset background information print("Background Information:") print(background_info) print("\nClinical Features Overview:") print(json.dumps(sample_chars, indent=2)) # 1. Gene Expression Data Availability # The dataset is from Illumina Expression Array and is about gene expression in liver tissue is_gene_available = True # 2.1 Data Availability # From background info, this study includes eQTLs related to LDL cholesterol levels # But trait values are not directly available in sample characteristics trait_row = None # Age data is available in row 1 age_row = 1 # Gender data is available in row 2 gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(x): # Not needed since trait data is not available return None def convert_age(x): try: # Extract number after colon age = int(x.split(': ')[1]) return age except: return None def convert_gender(x): try: # Extract value after colon and convert to binary gender = x.split(': ')[1] if gender == 'F': return 0 elif gender == 'M': return 1 return None except: return None # 3. Save metadata - initial filtering validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False ) # 4. Skip clinical feature extraction since trait_row is None # Get gene expression data genetic_data = get_genetic_data(matrix_path) # Preview raw data structure print("First few rows of the raw data:") print(genetic_data.head()) print("\nShape of the data:") print(genetic_data.shape) # Print first 20 row IDs to verify data structure print("\nFirst 20 probe/gene identifiers:") print(list(genetic_data.index)[:20]) # These IDs start with "ILMN_" which indicates they are Illumina probe IDs, not gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_path) # Preview annotation data structure print("Gene annotation data preview:") print(preview_df(gene_metadata)) # 1. 'ID' column in metadata matches ILMN probe IDs in expression data # 'Symbol' column contains the gene symbols # 2. Get gene mapping data mapping_data = get_gene_mapping(gene_metadata, "ID", "Symbol") # 3. Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result print("Gene expression data preview:") print(gene_data.head()) print("\nShape after mapping:", gene_data.shape) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Since we previously determined trait data is not available (trait_row = None), # we cannot proceed with data linking and quality assessment # We need to validate this cohort as not usable note = "The dataset contains gene expression data but lacks LDL cholesterol level measurements" is_usable = validate_and_save_cohort_info( is_final=False, # Use initial filtering since we can't do final validation cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False )