# Path Configuration from tools.preprocess import * # Processing context trait = "LDL_Cholesterol_Levels" cohort = "GSE34945" # Input paths in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels" in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE34945" # Output paths out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE34945.csv" out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE34945.csv" out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE34945.csv" json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json" # Get paths for relevant files soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_path) # Get unique values for each clinical feature sample_chars = get_unique_values_by_row(clinical_data) # Print dataset background information print("Background Information:") print(background_info) print("\nClinical Features Overview:") print(json.dumps(sample_chars, indent=2)) # 1. Gene Expression Data Availability # Based on the background information, this study is about SNPs genotyping, not gene expression is_gene_available = False # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # LDL levels not directly given, check changed in apoc3 levels as proxy trait_row = 2 # Age and gender not available in characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): # Extract numeric value after colon if isinstance(x, str) and "percent change in apoc3 levels:" in x: try: return float(x.split(":")[1].strip()) except: return None return None def convert_age(x): return None # Not available def convert_gender(x): return None # Not available # 3. Save Initial Metadata # Trait data is available since trait_row is not None is_trait_available = True if trait_row is not None else False validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:") print(preview) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file)