# Path Configuration from tools.preprocess import * # Processing context trait = "Lactose_Intolerance" cohort = "GSE138297" # Input paths in_trait_dir = "../DATA/GEO/Lactose_Intolerance" in_cohort_dir = "../DATA/GEO/Lactose_Intolerance/GSE138297" # Output paths out_data_file = "./output/preprocess/3/Lactose_Intolerance/GSE138297.csv" out_gene_data_file = "./output/preprocess/3/Lactose_Intolerance/gene_data/GSE138297.csv" out_clinical_data_file = "./output/preprocess/3/Lactose_Intolerance/clinical_data/GSE138297.csv" json_path = "./output/preprocess/3/Lactose_Intolerance/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # Based on background info mentioning "Microarray analysis", gene expression data is available is_gene_available = True # 2. Variable Availability and Data Type Conversion # Trait can be inferred from experimental condition (autologous vs allogenic) trait_row = 6 def convert_trait(value): # Extract value after colon if ':' in value: value = value.split(':', 1)[1].strip() # Convert to binary: autologous = 0 (control), allogenic = 1 (treated) if 'Autologous' in value: return 0 elif 'Allogenic' in value: return 1 return None # Age is available in row 3 age_row = 3 def convert_age(value): if ':' in value: value = value.split(':', 1)[1].strip() try: return float(value) except: return None return None # Gender is available in row 1 gender_row = 1 def convert_gender(value): if ':' in value: value = value.split(':', 1)[1].strip() try: # Data already coded as female=1, male=0 # But we need to reverse it to match our convention (female=0, male=1) return 1 - int(value) except: return None return None # 3. Save initial metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features since trait_row is not None selected_clinical = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview results print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # Review the IDs - they appear to be probe IDs, not human gene symbols # The format looks like Illumina probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview column names and first few values print("Gene Annotation Preview:") print(preview_df(gene_annotation)) # Extract gene mapping from annotation data # 'ID' column matches probe IDs in expression data # 'gene_assignment' column contains gene symbols mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment') # Apply mapping to convert probe measurements to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(df=linked_data, trait_col=trait) # 4. Check for biases and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate dataset quality and save metadata note = "" if is_biased: note = "The trait distribution is severely biased." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)