# Path Configuration from tools.preprocess import * # Processing context trait = "Large_B-cell_Lymphoma" cohort = "GSE114022" # Input paths in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma" in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE114022" # Output paths out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE114022.csv" out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE114022.csv" out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE114022.csv" json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # The title and design indicate this is gene expression data from cell lines is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Treatment (YK-S vs YK-R) can be used as binary trait trait_row = 1 # Cell lines only, no patient age data age_row = None # Cell lines only, no gender data gender_row = None # 2.2 Data Type Conversion def convert_trait(value): if not isinstance(value, str): return None value = value.lower().split(": ")[-1] # YK-S vs YK-R comparison (exclude DMSO control) if value == "yk-s": return 0 elif value == "yk-r": return 1 return None def convert_age(value): # Not available return None def convert_gender(value): # Not available return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview results preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print DataFrame info and dimensions to verify data structure print("DataFrame info:") print(genetic_data.info()) print("\nDataFrame dimensions:", genetic_data.shape) # Print an excerpt of the data to inspect row/column structure print("\nFirst few rows and columns of data:") print(genetic_data.head().iloc[:, :5]) # Print first 20 row IDs print("\nFirst 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # The gene identifiers start with "ILMN_" which indicates these are Illumina probe IDs # They need to be mapped to standard human gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file) # Preview the annotation data structure print("Gene Annotation Preview:") preview = preview_df(gene_annotation) print(json.dumps(preview, indent=2)) print("\nGene Annotation Analysis:") print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.") print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.") # Update validation info to show dataset cannot be used due to missing gene mapping validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=False, # Set to False since gene expression data is not mappable is_trait_available=trait_row is not None, note="Dataset contains numeric probe IDs but lacks gene symbol mapping information" )