# Path Configuration from tools.preprocess import * # Processing context trait = "Large_B-cell_Lymphoma" cohort = "GSE142494" # Input paths in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma" in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE142494" # Output paths out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE142494.csv" out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE142494.csv" out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE142494.csv" json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # Based on the series description, this appears to be a gene expression study focused on B-cell differentiation is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data rows trait_row = 0 # Using cell type as trait indicator age_row = None # Age not available gender_row = None # Gender not available # 2.2 Conversion functions def convert_trait(value: str) -> int: """Convert cell type to binary: 1 for memory B cells, 0 for total B cells""" if pd.isna(value): return None value = value.split(': ')[-1].lower().strip() if 'memory b cells' in value: return 1 elif 'total b cells' in value: return 0 return None def convert_age(value: str) -> float: """Not used as age data is unavailable""" return None def convert_gender(value: str) -> int: """Not used as gender data is unavailable""" return None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print("Clinical data preview:") print(preview_df(clinical_df)) clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print DataFrame info and dimensions to verify data structure print("DataFrame info:") print(genetic_data.info()) print("\nDataFrame dimensions:", genetic_data.shape) # Print an excerpt of the data to inspect row/column structure print("\nFirst few rows and columns of data:") print(genetic_data.head().iloc[:, :5]) # Print first 20 row IDs print("\nFirst 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # The identifiers start with "ILMN_", indicating they are Illumina probe IDs # These need to be mapped to human gene symbols for analysis requires_gene_mapping = True # Report discovery of missing gene annotation print("Gene Annotation Analysis:") print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.") print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.") # Update validation info to show dataset cannot be used due to missing gene mapping validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=False, # Set to False since gene expression data is not mappable is_trait_available=trait_row is not None, note="Dataset contains numeric probe IDs but lacks gene symbol mapping information" )