# Path Configuration from tools.preprocess import * # Processing context trait = "Large_B-cell_Lymphoma" cohort = "GSE145848" # Input paths in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma" in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE145848" # Output paths out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE145848.csv" out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE145848.csv" out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE145848.csv" json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # Title mentions "transcription programs" and B cell cancers, # suggesting gene expression data will be part of the series is_gene_available = True # 2.1 Data Availability # From clinical features dictionary: # - trait (healthy vs CLL) is available in row 1 # - age is not available # - gender is not available trait_row = 1 age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() # Convert to binary: 0 for healthy, 1 for disease if 'healthy' in value: return 0 elif 'chronic lymphocytic leukemia' in value: return 1 return None convert_age = None convert_gender = None # 3. Save Metadata # Initial filtering - only checking data availability is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, we proceed with clinical feature extraction clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the processed clinical data preview = preview_df(clinical_df) print("Clinical data preview:", preview) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print DataFrame info and dimensions to verify data structure print("DataFrame info:") print(genetic_data.info()) print("\nDataFrame dimensions:", genetic_data.shape) # Print an excerpt of the data to inspect row/column structure print("\nFirst few rows and columns of data:") print(genetic_data.head().iloc[:, :5]) # Print first 20 row IDs print("\nFirst 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # The row indices appear to be probe identifiers from a microarray platform # (16657436, etc) rather than human gene symbols. # These need to be mapped to standard gene symbols for analysis. requires_gene_mapping = True # Report discovery of missing gene annotation print("Gene Annotation Analysis:") print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.") print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.") # Update validation info to show dataset cannot be used due to missing gene mapping validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=False, # Set to False since gene expression data is not mappable is_trait_available=trait_row is not None, note="Dataset contains numeric probe IDs but lacks gene symbol mapping information" )