# Path Configuration from tools.preprocess import * # Processing context trait = "Large_B-cell_Lymphoma" cohort = "GSE159472" # Input paths in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma" in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE159472" # Output paths out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE159472.csv" out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE159472.csv" out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE159472.csv" json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Availability # Based on background info and series title, this is a microarray expression data for DLBCL is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Row Numbers # Trait (ABC/GCB subtypes) is in row 2 trait_row = 2 # Age and gender not available in characteristics age_row = None gender_row = None # 2.2 Conversion Functions def convert_trait(x): """Convert DLBCL subtype to binary: ABC=1, GCB=0""" try: if not isinstance(x, str): return None x = x.split(': ')[1].strip() if 'ABC' in x: return 1 elif 'GCB' in x: return 0 return None except: return None def convert_age(x): return None def convert_gender(x): return None # 3. Save initial metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features since trait data is available if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print DataFrame info and dimensions to verify data structure print("DataFrame info:") print(genetic_data.info()) print("\nDataFrame dimensions:", genetic_data.shape) # Print an excerpt of the data to inspect row/column structure print("\nFirst few rows and columns of data:") print(genetic_data.head().iloc[:, :5]) # Print first 20 row IDs print("\nFirst 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # Review gene identifiers - these appear to be Affymetrix probe IDs (e.g. "1007_s_at") # rather than standard human gene symbols, so mapping will be required requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file) # Print information about annotation data print("Gene Annotation Preview:") print("\nDataFrame Shape:", gene_annotation.shape) print("\nColumn Names:") print(gene_annotation.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_annotation)) # Get mapping between gene IDs and gene symbols from annotation data # 'ID' column matches probe IDs in expression data, 'Gene Symbol' contains human gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Print info about the resulting gene expression data print("Gene expression data shape after mapping:", gene_data.shape) print("\nFirst few mapped genes and their expression values:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # Debug print to check data before handling missing values print("\nPreview of linked data before handling missing values:") print(linked_data.head()) # 3. Handle missing values linked_data = handle_missing_values(df=linked_data, trait_col=trait) print("\nPreview of linked data after handling missing values:") print(linked_data.head()) # 4. Check for biases and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate dataset quality and save metadata note = "" if is_biased: note = "The trait distribution is severely biased." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)