# Path Configuration from tools.preprocess import * # Processing context trait = "Large_B-cell_Lymphoma" cohort = "GSE248835" # Input paths in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma" in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE248835" # Output paths out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE248835.csv" out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE248835.csv" out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE248835.csv" json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Based on background info mentioning gene expression signatures # 2.1 Data Availability trait_row = 10 # histologically.proven.dlbcl.group indicates disease subtype age_row = None # Age not available in characteristics gender_row = None # Gender not available in characteristics # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None val = x.split(': ')[-1] # Binary coding: DLBCL+Others as 0, HGBL as 1 if val == 'DLBCL+Others': return 0 elif val == 'HGBL': return 1 return None def convert_age(x): return None # Not used since age data unavailable def convert_gender(x): return None # Not used since gender data unavailable # 3. Save initial metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: selected_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print("Preview of extracted clinical features:") print(preview_df(selected_df)) # Save to CSV selected_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # These appear to be numerical indices rather than proper gene symbols # Human gene symbols are typically alphanumeric strings like 'BRCA1', 'TP53', etc. # Therefore mapping will be required to convert these numeric IDs to gene symbols requires_gene_mapping = True # Report discovery of missing gene annotation print("Gene Annotation Analysis:") print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.") print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.") # Update validation info to show dataset cannot be used due to missing gene mapping validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=False, # Set to False since gene expression data is not mappable is_trait_available=trait_row is not None, note="Dataset contains numeric probe IDs but lacks gene symbol mapping information" )