# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_Cancer" cohort = "GSE148346" # Input paths in_trait_dir = "../DATA/GEO/Liver_Cancer" in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE148346" # Output paths out_data_file = "./output/preprocess/3/Liver_Cancer/GSE148346.csv" out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE148346.csv" out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE148346.csv" json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" # Step 1: Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Step 2: Extract background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Step 3: Get dictionary of unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Step 4: Print background info and sample characteristics print("Dataset Background Information:") print("-" * 80) print(background_info) print("\nSample Characteristics:") print("-" * 80) print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on the background information, this appears to be a biopsy study with gene expression analysis is_gene_available = True # 2. Variable Availability and Data Type Conversion # For trait, we can use tissue disease state (key 3) which indicates lesional (LS) vs non-lesional (NL) liver tissue trait_row = 3 def convert_trait(x: str) -> Optional[int]: if not isinstance(x, str): return None value = x.split(': ')[-1] if value == 'LS': return 1 # Lesional elif value == 'NL': return 0 # Non-lesional return None # No age information available age_row = None convert_age = None # No gender information available gender_row = None convert_gender = None # 3. Save metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print(preview_df(selected_clinical)) # Save to file os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical.to_csv(out_clinical_data_file) # 1. Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # 2. Print first 20 row IDs print("First 20 gene/probe identifiers:") print(genetic_data.index[:20]) # Those are Affymetrix probe IDs (_at suffix is characteristic of Affy arrays) # They need to be mapped to gene symbols for consistency and interpretability requires_gene_mapping = True # 1. Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # 2. Preview annotation data print("Column names and first few values in gene annotation data:") print(preview_df(gene_annotation)) # 1. Get gene mapping dataframe from annotation mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 2. Apply mapping to convert probe level data to gene level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview gene data print("\nFirst 5 genes and 5 samples of gene expression data:") print(gene_data.iloc[:5, :5]) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge if features are biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Save cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)