# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_Cancer" cohort = "GSE174570" # Input paths in_trait_dir = "../DATA/GEO/Liver_Cancer" in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE174570" # Output paths out_data_file = "./output/preprocess/3/Liver_Cancer/GSE174570.csv" out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE174570.csv" out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE174570.csv" json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # Yes - using Affymetrix Human Genome U219 Array is_gene_available = True # 2. Variable Availability and Data Type Conversion # Disease state (trait) is in row 0, has two values (HCC vs control) trait_row = 0 # Age and gender not available in characteristics age_row = None gender_row = None # Convert disease state to binary (HCC = 1, Non-tumour/control = 0) def convert_trait(value): if not isinstance(value, str): return None value = value.lower().split(': ')[-1] if 'hcc' in value: return 1 return 0 def convert_age(value): return None def convert_gender(value): return None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features if trait_row is not None: selected_clinical = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) print("Preview of selected clinical features:") print(preview_df(selected_clinical)) selected_clinical.to_csv(out_clinical_data_file)