# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_Cancer" cohort = "GSE209875" # Input paths in_trait_dir = "../DATA/GEO/Liver_Cancer" in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE209875" # Output paths out_data_file = "./output/preprocess/3/Liver_Cancer/GSE209875.csv" out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE209875.csv" out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE209875.csv" json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" # First print directory contents print("Files in directory:") print(os.listdir(in_cohort_dir)) # Get file paths for soft and matrix files files = os.listdir(in_cohort_dir) soft_files = [f for f in files if ('soft' in f.lower() or 'soft.gz' in f.lower())] matrix_files = [f for f in files if ('matrix' in f.lower() or 'matrix.gz' in f.lower())] print("\nFound files:") print("SOFT files:", soft_files) print("Matrix files:", matrix_files) if len(soft_files) > 0 and len(matrix_files) > 0: soft_file = os.path.join(in_cohort_dir, soft_files[0]) matrix_file = os.path.join(in_cohort_dir, matrix_files[0]) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("\nBackground Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) else: print("\nRequired SOFT and/or matrix files not found in directory")