# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_Cancer" cohort = "GSE212047" # Input paths in_trait_dir = "../DATA/GEO/Liver_Cancer" in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE212047" # Output paths out_data_file = "./output/preprocess/3/Liver_Cancer/GSE212047.csv" out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE212047.csv" out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE212047.csv" json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # This is a microarray dataset of HSC cells, which should contain gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # This is an animal study (mice) of specific genotypes, not a human study comparing disease cases vs. controls # So trait data is not available in a way useful for our analysis trait_row = None age_row = None gender_row = None def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # 3. Save Metadata # The dataset only has genetic data but no trait data for our analysis is_trait_available = False if trait_row is None else True validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Skip this step since trait_row is None # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print DataFrame info and dimensions to verify data structure print("DataFrame info:") print(genetic_data.info()) print("\nDataFrame dimensions:", genetic_data.shape) # Print an excerpt of the data to inspect row/column structure print("\nFirst few rows and columns of data:") print(genetic_data.head().iloc[:, :5]) # Print first 20 row IDs print("\nFirst 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # Looking at the row indices (gene identifiers), they appear to be numerical identifiers (10338001, etc.) # rather than standard human gene symbols (which are usually alphanumeric like BRCA1, TP53, etc.) # These appear to be probe IDs that will need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file) # Extract gene symbols from gene_assignment column def extract_gene_symbol(assignment): if pd.isna(assignment) or assignment == '---': return None # Get the second part after '//' which typically contains the gene symbol parts = assignment.split('//') if len(parts) >= 2: return parts[1].strip() return None # Create mapping dataframe with ID and extracted gene symbols mapping_df = pd.DataFrame({ 'ID': gene_annotation['ID'], 'Gene': gene_annotation['gene_assignment'].apply(extract_gene_symbol) }) # Preview the mapping data structure print("Gene Mapping Preview:") preview = preview_df(mapping_df) print(json.dumps(preview, indent=2)) # Map gene identifiers between genetic data and annotation data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Print info about gene expression data after mapping print("Gene Expression Data after Mapping:") print(f"Number of genes: {len(gene_data)}") print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Create an empty dataframe since this is just a mouse study without usable trait data empty_df = pd.DataFrame(columns=['trait']) # Check bias and save metadata is_biased = True # Set as biased since this is not even human data note = "This is a mouse study without usable trait data for human disease analysis." validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=empty_df, note=note )