# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_Cancer" cohort = "GSE218438" # Input paths in_trait_dir = "../DATA/GEO/Liver_Cancer" in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE218438" # Output paths out_data_file = "./output/preprocess/3/Liver_Cancer/GSE218438.csv" out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE218438.csv" out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE218438.csv" json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" # Get file paths for soft and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each clinical feature row clinical_features = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nClinical Features and Sample Values:") print(json.dumps(clinical_features, indent=2)) # 1. Gene Expression Data Availability # This dataset is about transcriptional profiling using L1000 platform across multiple cell lines # So it contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Looking at the sample characteristics, we can't find trait (disease status), age or gender information # The data is from cell lines, not human patients trait_row = None age_row = None gender_row = None # 2.2 Data Type Conversion # Although not used since data is unavailable, defining conversion functions as required def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # 3. Save Metadata # Initial validation - trait data is not available validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False # trait_row is None ) # 4. Clinical Feature Extraction # Skip this step since trait_row is None # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file) # Print DataFrame info and dimensions to verify data structure print("DataFrame info:") print(genetic_data.info()) print("\nDataFrame dimensions:", genetic_data.shape) # Print an excerpt of the data to inspect row/column structure print("\nFirst few rows and columns of data:") print(genetic_data.head().iloc[:, :5]) # Print first 20 row IDs print("\nFirst 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # These IDs appear to be Affymetrix probe IDs (e.g. "1007_s_at", "AFFX-TrpnX-M_at") # which need to be mapped to human gene symbols for proper analysis requires_gene_mapping = True # Extract gene annotation data with different prefix filtering # Platform sections in SOFT files often start with "!Platform_table_begin" until "!Platform_table_end" gene_annotation = get_gene_annotation(soft_file, prefixes=['!Platform_table_begin', '!Platform_table_end']) # Preview the annotation data structure to identify relevant columns print("Gene Annotation Data Preview:") preview = preview_df(gene_annotation) print(json.dumps(preview, indent=2)) # Print column names print("\nAvailable columns:") print(gene_annotation.columns.tolist()) # Extract gene annotation data using platform table markers gene_annotation = get_gene_annotation(soft_file, prefixes=['!Platform_table_begin', '!Platform_table_end']) # Preview the data structure and columns print("Gene Annotation Data Structure:") print("DataFrame dimensions:", gene_annotation.shape) print("\nFirst few rows and columns:") print(gene_annotation.head()) # Print column names to help identify probe ID and gene symbol columns print("\nAvailable columns:") print(gene_annotation.columns.tolist()) # Load the gene annotation data from SOFT file - specifically targeting platform annotation table with gzip.open(soft_file, 'rt') as f: platform_section = False table_data = [] header = None for line in f: if 'Gene_Symbol' in line or 'Gene Symbol' in line: # Found the header line header = line.strip().split('\t') platform_section = True continue elif platform_section and line.strip(): if '!Platform_table_end' in line: platform_section = False else: table_data.append(line.strip().split('\t')) # Create dataframe if we found the header if header: gene_annotation = pd.DataFrame(table_data, columns=header) print("Updated Gene Annotation Data:") print(gene_annotation.head()) print("\nColumns:", gene_annotation.columns.tolist()) # Extract mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene_Symbol') print("\nGene Mapping Preview:") print(mapping_data.head()) # Apply the mapping to convert probe level data to gene level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the resulting gene expression data print("\nGene Expression Data:") print(f"Shape: {gene_data.shape}") print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) else: print("Could not find gene symbol column in platform annotation")