# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_cirrhosis" cohort = "GSE163211" # Input paths in_trait_dir = "../DATA/GEO/Liver_cirrhosis" in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE163211" # Output paths out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE163211.csv" out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE163211.csv" out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE163211.csv" json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json" # Step 1: Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Step 2: Extract background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Step 3: Get dictionary of unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Step 4: Print background info and sample characteristics print("Dataset Background Information:") print("-" * 80) print(background_info) print("\nSample Characteristics:") print("-" * 80) print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # From the background info, we can see this dataset contains gene expression data from Nanostring nCounter assay is_gene_available = True # 2.1 Data Availability # Cirrhosis status can be inferred from NAFLD stage in row 8 trait_row = 8 # Age is available in row 3 age_row = 3 # Gender is available in row 4 gender_row = 4 # 2.2 Data Type Conversion Functions def convert_trait(x): if not x or ':' not in x: return None stage = x.split(': ')[1].strip() # NASH with fibrosis stage 1-4 indicates cirrhosis, others are non-cirrhosis return 1 if stage == 'NASH_F1_F4' else 0 def convert_age(x): if not x or ':' not in x: return None try: return float(x.split(': ')[1]) except: return None def convert_gender(x): if not x or ':' not in x: return None gender = x.split(': ')[1].strip().lower() if gender == 'female': return 0 elif gender == 'male': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True) # 4. Clinical Feature Extraction selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the clinical data preview_result = preview_df(selected_clinical_df) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # 1. Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # 2. Print first 20 row IDs print("First 20 gene/probe identifiers:") print(genetic_data.index[:20]) requires_gene_mapping = False # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) linked_data = linked_data.rename(columns={'nafld stage': trait}) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove biased demographic ones is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains gene expression data from Nanostring nCounter assay measuring 795 genes in liver tissue from NAFLD patients." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)