# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_cirrhosis" cohort = "GSE66843" # Input paths in_trait_dir = "../DATA/GEO/Liver_cirrhosis" in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE66843" # Output paths out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE66843.csv" out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE66843.csv" out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE66843.csv" json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json" # Step 1: Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Step 2: Extract background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Step 3: Get dictionary of unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Step 4: Print background info and sample characteristics print("Dataset Background Information:") print("-" * 80) print(background_info) print("\nSample Characteristics:") print("-" * 80) print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on summary and platform information, this appears to be a cell line study # with potential gene expression data for HCV infection study is_gene_available = True # 2. Clinical Feature Analysis # Looking at characteristics, this is a cell line study without human clinical data trait_row = None # No trait data for liver cirrhosis age_row = None # No age data gender_row = None # No gender data def convert_trait(x): # Not needed as trait data unavailable return None def convert_age(x): # Not needed as age data unavailable return None def convert_gender(x): # Not needed as gender data unavailable return None # 3. Save initial filtering results is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip as trait_row is None, indicating no clinical data available # 1. Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # 2. Print first 20 row IDs print("First 20 gene/probe identifiers:") print(genetic_data.index[:20]) # These appear to be Illumina probe IDs (starting with ILMN_) rather than standard human gene symbols # Illumina IDs need to be mapped to gene symbols for downstream analysis requires_gene_mapping = True # 1. Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # 2. Preview annotation data print("Column names and first few values in gene annotation data:") print(preview_df(gene_annotation)) # 1. Observe gene identifiers # From previous outputs: # Gene expression data uses identifiers like ILMN_1343291 # In gene annotation, 'ID' column has ILMN_ identifiers, 'Symbol' has gene symbols # 2. Extract mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') # 3. Apply mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Skip remaining steps since no clinical data is available # Dataset unusability was already recorded in initial filtering