# Path Configuration from tools.preprocess import * # Processing context trait = "Liver_cirrhosis" cohort = "GSE85550" # Input paths in_trait_dir = "../DATA/GEO/Liver_cirrhosis" in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE85550" # Output paths out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE85550.csv" out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE85550.csv" out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE85550.csv" json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json" # Step 1: Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Step 2: Extract background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Step 3: Get dictionary of unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Step 4: Print background info and sample characteristics print("Dataset Background Information:") print("-" * 80) print(background_info) print("\nSample Characteristics:") print("-" * 80) print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data is_gene_available = True # Based on study title, this is a molecular signature study likely containing gene expression data # 2.1 Data Availability trait_row = 2 # Time point can indicate disease progression state age_row = None # Age information not available gender_row = None # Gender information not available # 2.2 Data Type Conversion Functions def convert_trait(value): if value is None: return None value = value.split(': ')[-1].strip() return 1 if value == 'Follow-up' else 0 # Follow-up represents more advanced disease state def convert_age(value): # Not needed since age data unavailable return None def convert_gender(value): # Not needed since gender data unavailable return None # 3. Save Initial Validation Results validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True # trait_row is available ) # 4. Clinical Feature Extraction clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_df(clinical_df) clinical_df.to_csv(out_clinical_data_file) # 1. Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # 2. Print first 20 row IDs print("First 20 gene/probe identifiers:") print(genetic_data.index[:20]) # These appear to be standard human gene symbols (e.g. AARS, ABLIM1, ACOT2 etc.) # No mapping needed as they are already in the correct format requires_gene_mapping = False # 1. Normalize gene symbols and save gene data genetic_data = normalize_gene_symbols_in_index(genetic_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge if features are biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Save cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)