# Path Configuration from tools.preprocess import * # Processing context trait = "Longevity" cohort = "GSE44147" # Input paths in_trait_dir = "../DATA/GEO/Longevity" in_cohort_dir = "../DATA/GEO/Longevity/GSE44147" # Output paths out_data_file = "./output/preprocess/3/Longevity/GSE44147.csv" out_gene_data_file = "./output/preprocess/3/Longevity/gene_data/GSE44147.csv" out_clinical_data_file = "./output/preprocess/3/Longevity/clinical_data/GSE44147.csv" json_path = "./output/preprocess/3/Longevity/cohort_info.json" # Step 1: Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Step 2: Extract background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Step 3: Get dictionary of unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Step 4: Print background info and sample characteristics print("Dataset Background Information:") print("-" * 80) print(background_info) print("\nSample Characteristics:") print("-" * 80) print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # This dataset uses Affymetrix Mouse Gene 1.0 ST Arrays for gene expression profiling is_gene_available = True # 2.1 Data Availability # Trait (long-lived) cannot be determined since all samples are C57BL/6 mice trait_row = None # Age is available in row 2 with different age values age_row = 2 # Gender information is not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): return None def convert_age(x): # Extract numeric value value = x.split(': ')[1].split(' ')[0] try: return float(value) # Convert to days as continuous variable except: return None def convert_gender(x): return None # 3. Save Metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Skip Clinical Feature Extraction since trait_row is None # 1. Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # 2. Print first 20 row IDs print("First 20 gene/probe identifiers:") print(genetic_data.index[:20]) # These appear to be probe IDs from an array platform, not standard gene symbols # They are numerical identifiers that will need mapping to gene symbols requires_gene_mapping = True # 1. Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # 2. Preview annotation data print("Column names and first few values in gene annotation data:") print(preview_df(gene_annotation)) # 1&2. Extract probe-to-gene mapping columns and create mapping dataframe # 'ID' column matches probe IDs in expression data, and 'gene_assignment' has gene symbols mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment') # 3. Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview results print("\nFirst few rows and columns of gene expression data:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2-4. Skip linking and processing since no trait data available # 5. Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=None, note="Mouse gene expression data from different ages, not suitable for studying human traits." ) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2-4. Skip clinical data processing since trait data is not available # Create minimal DataFrame since dataset is not usable without trait data minimal_df = pd.DataFrame() # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # No trait data means dataset is biased/unusable df=minimal_df, note="Mouse gene expression data measuring age effects. Not suitable for studying human traits." )