# Path Configuration from tools.preprocess import * # Processing context trait = "Lower_Grade_Glioma" cohort = "GSE24072" # Input paths in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma" in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE24072" # Output paths out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE24072.csv" out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE24072.csv" out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE24072.csv" json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json" # Step 1: Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Step 2: Extract background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Step 3: Get dictionary of unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Step 4: Print background info and sample characteristics print("Dataset Background Information:") print("-" * 80) print(background_info) print("\nSample Characteristics:") print("-" * 80) print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes - the background indicates HU-133A oligonucleotide arrays (Affymetrix) were used for gene expression profiling is_gene_available = True # 2.1 Data Availability # trait data is in row 2 (glioma grades) trait_row = 2 # age data is in row 1 age_row = 1 # gender data is in row 0 gender_row = 0 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert glioma grade to binary (0 for grade III, 1 for grade IV/V)""" if pd.isna(value) or not isinstance(value, str): return None value = value.split(": ")[-1].lower() if "grade iii" in value: return 0 elif "grade iv" in value or "grade v" in value: # Higher grades grouped as 1 return 1 return None def convert_age(value: str) -> float: """Convert age string to float""" if pd.isna(value) or not isinstance(value, str): return None try: age = float(value.split(": ")[-1]) return age except: return None def convert_gender(value: str) -> int: """Convert gender to binary (0 for female, 1 for male)""" if pd.isna(value) or not isinstance(value, str): return None value = value.split(": ")[-1].lower() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # 1. Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # 2. Print first 20 row IDs print("First 20 gene/probe identifiers:") print(genetic_data.index[:20]) # These identifiers are Affymetrix probe IDs (starting with numbers followed by "_at"), not human gene symbols requires_gene_mapping = True # 1. Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # 2. Preview annotation data print("Column names and first few values in gene annotation data:") print(preview_df(gene_annotation)) # Preview additional rows to check for gene annotations print("\nPreview of rows 100-105:") print(preview_df(gene_annotation.iloc[100:105])) # 1. We see 'ID' holds Affymetrix probe IDs matching the format in gene_data.index, # and 'Gene Symbol' holds the desired gene symbols probe_col = 'ID' gene_col = 'Gene Symbol' # 2. Extract mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col) # 3. Convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few gene symbols after mapping:") print(gene_data.index[:5]) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove biased demographic ones is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Dataset contains gene expression data for gliomas. Trait is based on glioma grade (III vs IV/V)." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)