# Path Configuration from tools.preprocess import * # Processing context trait = "Lower_Grade_Glioma" cohort = "GSE35158" # Input paths in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma" in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE35158" # Output paths out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE35158.csv" out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE35158.csv" out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE35158.csv" json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json" # Step 1: Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Step 2: Extract background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Step 3: Get dictionary of unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Step 4: Print background info and sample characteristics print("Dataset Background Information:") print("-" * 80) print(background_info) print("\nSample Characteristics:") print("-" * 80) print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info, this is gene expression profiling study is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # For trait: WHO grade (row 1) can be used as severity indicator trait_row = 1 # Age and gender not available in sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None if "who grade" not in x.lower(): return None try: grade = x.lower().split(":")[-1].strip() if "ii" in grade: return 0 # Lower grade elif "iii" in grade: return 1 # Higher grade return None except: return None convert_age = None convert_gender = None # 3. Save Metadata _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # 1. Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # 2. Print first 20 row IDs print("First 20 gene/probe identifiers:") print(genetic_data.index[:20]) # These are Illumina probe IDs (starting with "ILMN_"), not human gene symbols # They will need to be mapped to standard gene symbols for analysis requires_gene_mapping = True # 1. Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # 2. Preview annotation data print("Column names and first few values in gene annotation data:") print(preview_df(gene_annotation)) # Preview additional rows to check for gene annotations print("\nPreview of rows 100-105:") print(preview_df(gene_annotation.iloc[100:105])) # 1. The column "ID" stores probe IDs matching gene expression data # The column "Symbol" stores gene symbols prob_col = "ID" gene_col = "Symbol" # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Convert probe measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print first few rows to verify print("Preview of gene expression data:") print(preview_df(gene_data)) # Save gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove biased demographic ones is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="All subjects are male according to series summary. Age information not available." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)