# Path Configuration from tools.preprocess import * # Processing context trait = "Lung_Cancer" cohort = "GSE244123" # Input paths in_trait_dir = "../DATA/GEO/Lung_Cancer" in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE244123" # Output paths out_data_file = "./output/preprocess/3/Lung_Cancer/GSE244123.csv" out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE244123.csv" out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE244123.csv" json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Title indicates gene expression data from lung cancer # 2.1 Data Availability trait_row = 1 # Can use grade as indicator of lung cancer status, normal vs grades II-IV age_row = 5 # Age data is available gender_row = 4 # Gender data is available as Sex # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None val = x.split(': ')[1].strip() if val == 'normal': return 0 elif val in ['II', 'III', 'IV']: return 1 return None def convert_age(x): if pd.isna(x): return None try: return float(x.split(': ')[1]) except: return None def convert_gender(x): if pd.isna(x): return None val = x.split(': ')[1].strip() if val == 'F': return 0 elif val == 'M': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the IDs like A1BG, A1CF, A2M, etc. # These are standard HGNC gene symbols based on nomenclature from HUGO Gene Nomenclature Committee (HGNC) # No mapping needed as they are already standard human gene symbols requires_gene_mapping = False # 1. Normalize gene symbols using NCBI Gene database synonyms normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Load clinical data from previous steps selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains normalized gene expression data and clinical data." ) # 6. Save data if usable if is_usable: linked_data.to_csv(out_data_file)