# Path Configuration from tools.preprocess import * # Processing context trait = "Lung_Cancer" cohort = "GSE244645" # Input paths in_trait_dir = "../DATA/GEO/Lung_Cancer" in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE244645" # Output paths out_data_file = "./output/preprocess/3/Lung_Cancer/GSE244645.csv" out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE244645.csv" out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE244645.csv" json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on background info, this is platelet gene expression data from microarray is_gene_available = True # 2. Variable Availability and Row Detection # trait (cancer state) is in Feature 1 - tumour presence/absence trait_row = 1 # age is in Feature 5 age_row = 5 # gender is in Feature 4 gender_row = 4 # 2. Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert tumor status to binary: 1 for tumor presence, 0 for tumor free""" if not value or value == '-': return None value = value.split(': ')[1].lower() if 'tumour presence' in value: return 1 elif 'tumour free' in value: return 0 return None def convert_age(value: str) -> float: """Convert age string to float""" if not value or value == '-': return None try: return float(value.split(': ')[1]) except: return None def convert_gender(value: str) -> int: """Convert gender to binary: 1 for male, 0 for female""" if not value or value == '-': return None value = value.split(': ')[1].lower() if value == 'male': return 1 elif value == 'female': return 0 return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The identifiers (e.g. TC0100006437.hg.1) appear to be probe IDs from a microarray platform # rather than standard human gene symbols like BRCA1, TP53 etc. # They will need to be mapped to official gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Try searching for ID patterns in all columns print("All column names:", gene_metadata.columns.tolist()) print("\nPreview first few rows of each column to locate numeric IDs:") for col in gene_metadata.columns: sample_values = gene_metadata[col].dropna().head().tolist() print(f"\n{col}:") print(sample_values) # Inspect raw file to see unfiltered annotation format import gzip print("\nRaw SOFT file preview:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: header = [] for i, line in enumerate(f): header.append(line.strip()) if i >= 10: # Preview first 10 lines break print('\n'.join(header)) # Create function to extract gene symbols from annotation text def extract_gene_symbols(text): if not isinstance(text, str): return [] symbols = [] # Get symbols from parentheses after "Homo sapiens" matches = re.findall(r'Homo sapiens.*?\((\w+)\)', text) symbols.extend(matches) # Get symbols from HGNC tags hgnc_matches = re.findall(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\].*?(\w+)', text) symbols.extend(hgnc_matches) return list(set(symbols)) # Create mapping dataframe by extracting gene symbols from SPOT_ID.1 column gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbols) mapping_data = gene_metadata[['ID', 'Gene']].copy() # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # Save genetic data gene_data.to_csv(out_gene_data_file) print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows and columns of mapped data:") print(gene_data.head().iloc[:, :5]) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation data and load gene data from file gene_metadata = get_gene_annotation(soft_file) # Refine extraction of gene symbols def extract_gene_symbols_from_annotation(text): if not isinstance(text, str): return [] # Focus on RefSeq entries which typically have cleaner gene names refseq_match = re.search(r'NM_\d+ // RefSeq // Homo sapiens .*? \((\w+)\)', text) if refseq_match: return [refseq_match.group(1)] # Return the symbol in parentheses return [] # Create mapping dataframe gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbols_from_annotation) mapping_data = gene_metadata[['ID', 'Gene']].copy() # Re-apply mapping with refined gene symbol extraction gene_data = apply_gene_mapping(gene_data, mapping_data) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save normalized gene expression data gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression and clinical data processed and linked using refined gene symbol extraction." ) # Save data if usable if is_usable: linked_data.to_csv(out_data_file)