# Path Configuration from tools.preprocess import * # Processing context trait = "Lung_Cancer" cohort = "GSE248830" # Input paths in_trait_dir = "../DATA/GEO/Lung_Cancer" in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE248830" # Output paths out_data_file = "./output/preprocess/3/Lung_Cancer/GSE248830.csv" out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE248830.csv" out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE248830.csv" json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the Series_summary mentioning "Targeted gene expression profiles" and NanoString panel is_gene_available = True # 2.1 Data Availability # Trait can be inferred from histology which has breast cancer vs lung cancer info trait_row = 2 # Age data available in row 0 age_row = 0 # Gender data available in row 1 gender_row = 1 # 2.2 Data Type Conversion Functions def convert_trait(x): # Extract value after colon and strip whitespace value = x.split(':', 1)[1].strip().lower() # Return 1 for lung cancer, 0 for breast cancer related histology if 'adenocarcinoma' in value: return 1 elif any(v in value for v in ['tnbc', 'er', 'pr', 'her2']): return 0 return None def convert_age(x): try: # Extract value after colon and convert to float value = x.split(':', 1)[1].strip() if value.lower() == 'n.a.': return None return float(value) except: return None def convert_gender(x): # Extract value after colon value = x.split(':', 1)[1].strip().lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save initial metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(selected_clinical_df) print("Preview of clinical data:") print(preview) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Review gene identifiers # Based on the preview of identifiers (e.g., A2M, ACVR1C, ADAM12), these appear to be # standard HGNC gene symbols and do not require mapping requires_gene_mapping = False # Since gene data already uses standardized symbols (as determined in Step 4), # we can directly use it without normalization gene_data = pd.DataFrame(gene_data, dtype=float) # Ensure numeric expression values gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs gene_data.to_csv(out_gene_data_file) # Load clinical data from previous steps selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains standardized gene expression data and clinical information for lung cancer analysis." ) # Save data if usable if is_usable: linked_data.to_csv(out_data_file)