# Path Configuration from tools.preprocess import * # Processing context trait = "Lung_Cancer" cohort = "GSE249262" # Input paths in_trait_dir = "../DATA/GEO/Lung_Cancer" in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE249262" # Output paths out_data_file = "./output/preprocess/3/Lung_Cancer/GSE249262.csv" out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE249262.csv" out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE249262.csv" json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data is_gene_available = True # RNA microarray data is mentioned in background # 2. Clinical Data Analysis # For trait: Use status field (Feature 3) to determine disease progression trait_row = 3 def convert_trait(x): if not isinstance(x, str): return None val = x.split(': ')[1] if ': ' in x else x if 'progression' in val.lower(): return 1 elif 'stable' in val.lower(): return 0 return None # Age and gender not available in characteristics age_row = None gender_row = None convert_age = None convert_gender = None # 3. Save Initial Filtering Results validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract Clinical Features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed data print("Preview of processed clinical data:") print(preview_df(selected_clinical)) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The identifiers appear to be numeric probe IDs (e.g. 23064070) rather than standard gene symbols # Based on the ID format and my knowledge of microarray data, these are likely probe IDs that need # mapping to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Try searching for ID patterns in all columns print("All column names:", gene_metadata.columns.tolist()) print("\nPreview first few rows of each column to locate numeric IDs:") for col in gene_metadata.columns: sample_values = gene_metadata[col].dropna().head().tolist() print(f"\n{col}:") print(sample_values) # Inspect raw file to see unfiltered annotation format import gzip print("\nRaw SOFT file preview:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: header = [] for i, line in enumerate(f): header.append(line.strip()) if i >= 10: # Preview first 10 lines break print('\n'.join(header)) # First inspect the platform table structure with gzip.open(soft_file, 'rt', encoding='utf-8') as f: for line in f: if "!Platform_table_begin" in line: print("Header:", next(f).strip()) print("First data row:", next(f).strip()) break # Extract platform data with proper column headers platform_rows = [] with gzip.open(soft_file, 'rt', encoding='utf-8') as f: platform_found = False for line in f: if "!Platform_table_begin" in line: platform_found = True header = next(f).strip().split('\t') continue if platform_found: if "!Platform_table_end" in line: break row = line.strip().split('\t') if len(row) == len(header): platform_rows.append(row) platform_data = pd.DataFrame(platform_rows, columns=header) print("\nAvailable columns:", platform_data.columns.tolist()) # Create mapping between probe IDs and gene symbols mapping_df = pd.DataFrame() id_col = [col for col in platform_data.columns if 'id' in col.lower()][0] gene_col = [col for col in platform_data.columns if 'gene' in col.lower() or 'symbol' in col.lower()][0] mapping_df['ID'] = platform_data[id_col] mapping_df['Gene'] = platform_data[gene_col] # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Print info about the mapped data print("\nShape of mapped gene expression data:", gene_data.shape) print("\nFirst few gene symbols:", gene_data.index[:5].tolist()) # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Try searching for ID patterns in all columns print("All column names:", gene_metadata.columns.tolist()) print("\nPreview first few rows of each column to locate numeric IDs:") for col in gene_metadata.columns: sample_values = gene_metadata[col].dropna().head().tolist() print(f"\n{col}:") print(sample_values) # Inspect raw file to see unfiltered annotation format import gzip print("\nRaw SOFT file preview:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: header = [] for i, line in enumerate(f): header.append(line.strip()) if i >= 10: # Preview first 10 lines break print('\n'.join(header)) # Since gene mapping failed in a previous step, we'll fall back to using probe IDs # Load clinical data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Save raw gene expression data with probe IDs gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains numerical probe-level expression data and clinical data. Gene symbol mapping was not completed." ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)