# Path Configuration from tools.preprocess import * # Processing context trait = "Lung_Cancer" cohort = "GSE249568" # Input paths in_trait_dir = "../DATA/GEO/Lung_Cancer" in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE249568" # Output paths out_data_file = "./output/preprocess/3/Lung_Cancer/GSE249568.csv" out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE249568.csv" out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE249568.csv" json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") is_gene_available = True # Based on the background info mentioning "Cancer Transcriptome Atlas" expression data # For trait: resectable lung cancer pre/post treatment trait_row = 0 # Found in row 0 with "tissue: NSCLC" def convert_trait(value: str) -> Optional[int]: if not isinstance(value, str): return None if ":" not in value: return None value = value.split(":")[-1].strip().lower() if "nsclc" in value: # NSCLC indicates the presence of lung cancer return 1 return None # Age not available in sample characteristics age_row = None convert_age = None # Gender not available in sample characteristics gender_row = None convert_gender = None # Save metadata about dataset usability is_trait_available = trait_row is not None is_usable = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Extract clinical features since trait data is available if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the gene identifiers observed in the data (e.g. A2M, ABCB1, ABCF1, ABL1), # these appear to be standard human gene symbols and don't need mapping requires_gene_mapping = False # Work directly with gene data since symbols are already standardized gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values gene_data.index = gene_data.index.astype(str) # Ensure string index for consistent joining gene_data.to_csv(out_gene_data_file) # Load clinical data from previous steps selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains gene expression data with standard gene symbols and clinical data. All samples are lung cancer cases." ) # Save data if usable if is_usable: linked_data.to_csv(out_data_file)