# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE144296" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE144296" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE144296.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE144296.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE144296.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on background info mentioning mRNA sequencing and gene expression analysis is_gene_available = True # 2.1 Data Availability # Trait (melanoma vs non-melanoma) can be inferred from cell type field (row 1) trait_row = 1 # Age not available in data age_row = None # Gender not available in data gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert cell type to binary melanoma indicator""" if not isinstance(x, str): return None x = x.lower().split(': ')[-1] if 'melanoma' in x: return 1 elif 'colorectal' in x: return 0 return None def convert_age(x): """Placeholder for age conversion""" return None def convert_gender(x): """Placeholder for gender conversion""" return None # 3. Save metadata for initial filtering validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview_df(selected_clinical) # Save clinical features selected_clinical.to_csv(out_clinical_data_file) # Extract genetic data matrix with case-insensitive marker genetic_data = get_genetic_data(matrix_file_path, marker="!series_matrix_table_begin".lower()) # Verify data was loaded if len(genetic_data.index) == 0: # Try alternative marker format genetic_data = get_genetic_data(matrix_file_path, marker="!Series_Matrix_Table_Begin") if len(genetic_data.index) == 0: print("Warning: No data was extracted from the matrix file. Please check the matrix file formatting.") is_gene_available = False else: print("First 20 row IDs:") print(list(genetic_data.index)[:20]) is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) if is_gene_available: genetic_data.to_csv(out_gene_data_file) # Examine file content before filtering with gzip.open(soft_file_path, 'rt') as f: print("\nSample of unfiltered SOFT file content (first 20 lines):") for i, line in enumerate(f): if i < 20: # Print more lines to better understand the structure print(line.strip()) elif i == 20: print("...") break # Try reading the matrix file for gene annotations since the SOFT file seems to lack them with gzip.open(matrix_file_path, 'rt') as f: print("\nSample of matrix file content (first 20 lines):") for i, line in enumerate(f): if i < 20: print(line.strip()) elif i == 20: print("...") break # Since we can see the file content now, update the gene metadata extraction probe_info_found = False with gzip.open(matrix_file_path, 'rt') as f: lines = [] for line in f: if line.startswith('!Platform_organism'): probe_info_found = True lines.append(line) elif probe_info_found and line.startswith('!'): lines.append(line) elif probe_info_found and not any(line.startswith(p) for p in ['!', '#', '^']): break gene_metadata_text = '\n'.join(lines) print("\nExtracted probe/gene information:") print(gene_metadata_text) # Try reading gene expression data using the library function genetic_data = get_genetic_data(matrix_file_path) # Convert index to string type genetic_data.index = genetic_data.index.astype(str) # Print sample identifiers for verification print("\nSample identifiers from genetic data:") print(list(genetic_data.index)[:5]) # Extract gene mapping info try: with gzip.open(matrix_file_path, 'rt') as f: for line in f: if '!series_matrix_table_begin' in line.lower(): # Found start of expression data break if line.startswith('!Sample_platform_id'): # Save the platform ID if we find it platform_line = line.strip() # For RNA-seq data, create a 1:1 mapping using the original gene identifiers ids = genetic_data.index.tolist() annotation_df = pd.DataFrame({ 'ID': ids, 'Gene': ids # Use same IDs as gene symbols for now }) print("\nSample rows from annotation mapping:") print(annotation_df.head()) # Apply gene mapping using library function gene_data = apply_gene_mapping(genetic_data, annotation_df) # Convert gene indices to string before normalization gene_data.index = gene_data.index.astype(str) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) print("\nFinal gene data shape:", gene_data.shape) print("Sample gene names after normalization:") print(list(gene_data.index)[:5]) # Save the processed gene data gene_data.to_csv(out_gene_data_file) except Exception as e: print(f"Error during gene mapping: {str(e)}") # Save genetic data without mapping if error occurs genetic_data.to_csv(out_gene_data_file) # Read the entire file first to find the exact line numbers of begin/end markers with gzip.open(matrix_file_path, 'rt') as f: lines = f.readlines() start_idx = None end_idx = None for i, line in enumerate(lines): if '!series_matrix_table_begin' in line.lower(): start_idx = i + 1 # Skip the marker line elif '!series_matrix_table_end' in line.lower(): end_idx = i break genetic_data = None if start_idx and end_idx: # Read only the data section genetic_data = pd.read_csv(io.StringIO(''.join(lines[start_idx:end_idx])), sep='\t', index_col=0) # Print results if genetic_data is not None and len(genetic_data) > 0: print("\nFirst 20 row IDs:") print(list(genetic_data.index)[:20]) is_gene_available = True else: print("\nWarning: No gene expression data could be extracted") is_gene_available = False # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) if is_gene_available: genetic_data.to_csv(out_gene_data_file)