# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE146264" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE146264" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE146264.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE146264.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE146264.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene expression data availability is_gene_available = True # This is an scRNA-seq dataset for CD8+ T cells # 2. Clinical data availability and conversion trait_row = 1 # subjectid indicates disease status (P for psoriasis patients, C for controls) age_row = None # Age data not available gender_row = None # Gender data not available def convert_trait(x: str) -> int: """Convert subject ID to binary trait status P = patient = 1, C = control = 0""" if not x or ':' not in x: return None val = x.split(':')[1].strip() if val.startswith('P'): # Patient return 1 elif val.startswith('C'): # Control return 0 return None def convert_age(x: str) -> float: """Convert age string to float""" return None # Not used since age_row is None def convert_gender(x: str) -> int: """Convert gender string to binary""" return None # Not used since gender_row is None # 3. Save initial metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview = preview_df(selected_clinical_df) print("Preview of processed clinical data:") print(preview) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Try different markers for gene data extraction markers = ["!series_matrix_table_begin", "!series_matrix_table_begin\t", "!dataset_table_begin"] for marker in markers: genetic_data = get_genetic_data(matrix_file_path, marker=marker) if not genetic_data.empty: break if genetic_data.empty: print("Warning: No genetic data was extracted from the matrix file.") is_gene_available = False else: # Print first 20 row IDs to examine data type print("First 20 row IDs:") print(list(genetic_data.index)[:20]) is_gene_available = True # Only save if data was successfully extracted genetic_data.to_csv(out_gene_data_file) # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Peek at file structure with gzip.open(matrix_file_path, 'rt') as f: print("First 10 lines of matrix file:") for i, line in enumerate(f): if i < 10: print(line.strip()) else: break # First try reading as tab-delimited without seeking markers try: genetic_data = pd.read_csv(matrix_file_path, compression='gzip', sep='\t', comment='!', low_memory=False) print("\nLoaded data shape:", genetic_data.shape) if not genetic_data.empty: if 'ID_REF' in genetic_data.columns: genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'}) genetic_data = genetic_data.set_index(genetic_data.columns[0]) # Print first 20 row IDs to examine data type print("\nFirst 20 row IDs:") print(list(genetic_data.index)[:20]) genetic_data.to_csv(out_gene_data_file) is_gene_available = True else: print("Warning: No genetic data was extracted from the matrix file.") is_gene_available = False except Exception as e: print(f"Error extracting genetic data: {str(e)}") is_gene_available = False # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) requires_gene_mapping = False # First peek at SOFT file structure with gzip.open(soft_file_path, 'rt') as f: print("First 20 lines of SOFT file:") # Store lines that don't start with ^, !, or # data_lines = [] for i, line in enumerate(f): if i < 20: print(line.strip()) if not any(line.startswith(p) for p in ['^', '!', '#']): data_lines.append(line) if len(data_lines) >= 5: # Get first few data lines break # Manual parsing approach since file structure is non-standard try: with gzip.open(soft_file_path, 'rt') as f: data_lines = [] for line in f: if not any(line.startswith(p) for p in ['^', '!', '#']): data_lines.append(line) if data_lines: gene_metadata = pd.read_csv(io.StringIO(''.join(data_lines)), sep='\t', low_memory=False) print("\nLoaded data shape:", gene_metadata.shape) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) else: print("Warning: No gene annotation data was found in the SOFT file.") except Exception as e: print(f"Error extracting gene annotation data: {str(e)}") # Check if we have valid gene expression data if 'genetic_data' not in locals() or genetic_data.empty: print("No valid gene expression data available. Skipping data integration.") # Create minimal DataFrame to indicate failure minimal_df = pd.DataFrame({'Failed': [1]}) validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=False, is_trait_available=True, is_biased=True, # Set to True to indicate dataset is unusable df=minimal_df, note="Failed to extract gene expression data from matrix file." ) else: # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)