# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE148319" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE148319" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE148319.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE148319.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE148319.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene expression data availability # Based on background info, this is a study with gene expression data from tumor xenografts is_gene_available = True # 2.1 Data availability # For trait - can be inferred from cell line info in row 8 trait_row = 8 # Age & gender not recorded in the sample characteristics age_row = None gender_row = None # 2.2 Data type conversion functions def convert_trait(value: str) -> int: """Convert cell line info to binary melanoma status""" if "melanoma" in value.lower(): return 1 elif "oral carcinoma" in value.lower(): return 0 return None def convert_age(value: str) -> float: return None def convert_gender(value: str) -> int: return None # 3. Save metadata _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features since trait_row is not None selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the processed clinical data print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs to examine data type print("First 20 row IDs:") print(list(genetic_data.index)[:20]) # After examining the IDs and confirming this is gene expression data: is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) genetic_data.to_csv(out_gene_data_file) # The pattern of identifiers shows these are probe IDs from an Affymetrix microarray platform # (format: number_at, number_s_at, number_x_at) # They need to be mapped to human gene symbols for proper analysis requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # Extract gene mapping from annotation data # ID column contains probe IDs that match gene expression data # Gene Symbol column contains standardized human gene symbols mapping_df = get_gene_mapping(gene_metadata, "ID", "Gene Symbol") # Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)