# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE148949" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE148949" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE148949.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE148949.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE148949.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Looking at series title and summary, this appears to be a microarray study of breast cancer models # with gene expression data from Agilent arrays is_gene_available = True # 2.1 Data Availability # From sample characteristics, this dataset contains reference samples from various cell lines # including melanoma (line 6). However it's just a reference pool, not experimental samples # so no real trait/phenotype data is available trait_row = None age_row = None gender_row = None # 3. Save Metadata # Only has gene expression data but no trait data for analysis validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False) # 4. Skip clinical feature extraction since trait_row is None # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs to examine data type print("First 20 row IDs:") print(list(genetic_data.index)[:20]) # After examining the IDs and confirming this is gene expression data: is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) genetic_data.to_csv(out_gene_data_file) # Based on my biomedical expertise, looking at the gene identifiers: # The numeric identifiers (e.g. '41334', '41335' etc.) and '1/2-SBSRNA4' # appear to be probe IDs or array feature numbers rather than standard human gene symbols # Gene symbols would typically be in formats like 'BRAF', 'NRAS', 'TP53' # Therefore this data requires mapping from probe IDs to gene symbols requires_gene_mapping = True # Extract gene annotation data from platform section of SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Check available columns to find probe ID and gene symbol mappings print("\nGene annotation data shape:", gene_metadata.shape) print("\nGene annotation columns:") print(gene_metadata.columns) # Preview first few rows to understand data structure print("\nFirst few rows:") print(gene_metadata.head()) # Look for probe ID patterns in each column for col in gene_metadata.columns: print(f"\nSample values from column '{col}':") sample_vals = gene_metadata[col].head(10).tolist() print(sample_vals) # Based on the output, determine map_config probe_col = None gene_col = None for col in gene_metadata.columns: # Compare values to gene expression index sample_vals = set(gene_metadata[col].astype(str).head(100)) genetic_ids = set(list(genetic_data.index)[:100]) overlap = sample_vals & genetic_ids if len(overlap) > 0: probe_col = col break # Print mapping column candidates print("\nMapping columns found:") print(f"Probe ID column: {probe_col}") print(f"Gene Symbol column: {gene_col}") # The index already contains gene symbols (e.g. A1BG, A1CF) as seen in output gene_data = genetic_data.copy() # Normalize gene symbols to ensure consistency gene_data = normalize_gene_symbols_in_index(gene_data) print("\nFirst 10 rows of processed gene expression data:") print(gene_data.head(10)) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # No clinical data available, so can't perform associative analysis # But provide gene_data for validation and indicate bias validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Can't do association analysis without trait data df=gene_data, # Provide gene expression data for validation note="Dataset contains only reference samples from cell lines. No trait data available for analysis." ) # Skip saving linked data since dataset is not usable without trait data