# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE189631" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE189631" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE189631.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE189631.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE189631.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Debug: Print paths and directory existence print("Cohort directory path:", in_cohort_dir) print("Directory exists:", os.path.exists(in_cohort_dir)) if os.path.exists(in_cohort_dir): files = os.listdir(in_cohort_dir) print("\nFiles in directory:", files) # Look for gzipped files if regular files not found matrix_files = [f for f in files if ('matrix' in f.lower() and f.endswith('.gz'))] soft_files = [f for f in files if ('soft' in f.lower() and f.endswith('.gz'))] if matrix_files and soft_files: matrix_file = os.path.join(in_cohort_dir, matrix_files[0]) soft_file = os.path.join(in_cohort_dir, soft_files[0]) print("\nFound files:") print("Matrix file:", matrix_file) print("SOFT file:", soft_file) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("\nDataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) else: print("\nRequired .gz files not found in directory") else: print("\nDirectory does not exist")