# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE202806" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE202806" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE202806.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE202806.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE202806.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Yes, this contains gene expression data of 770 cancer-related genes is_gene_available = True # 2.1 Data Availability # Trait (NF1 mutation status) is available in row 1 trait_row = 1 # Age and gender not available age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert NF1 mutation status to binary - WT=0, MUT=1""" if value and isinstance(value, str): value = value.split(": ")[-1].strip().upper() if value == 'MUT': return 1 elif value == 'WT': return 0 return None def convert_age(value: str) -> float: """Convert age to float - not used since age not available""" return None def convert_gender(value: str) -> int: """Convert gender to binary - not used since gender not available""" return None # 3. Save metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract clinical features since trait_row exists clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print("Clinical data preview:") preview = preview_df(clinical_df) print(preview) # Save clinical features os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Since we determined in Step 2 that this dataset contains methylation data rather than gene expression data, # we will not proceed with gene expression data extraction. # The preprocessing pipeline should stop here since this dataset is not suitable for our gene expression analysis. print("\nSkipping gene expression data extraction since this dataset contains methylation data rather than gene expression data.")