# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE215868" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE215868" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE215868.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE215868.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE215868.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on background info, this is a gene expression dataset studying melanoma outcomes is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Trait data is available from "long-term benefit" field in key 4 trait_row = 4 # Age data is available in key 0 age_row = 0 # Gender data not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert long-term benefit to binary (0=NO, 1=YES)""" if pd.isna(value): return None value = value.split(": ")[-1] if value == "YES": return 1 elif value == "NO": return 0 return None def convert_age(value: str) -> Optional[float]: """Convert age to continuous numeric value""" if pd.isna(value): return None try: return float(value.split(": ")[-1]) except: return None def convert_gender(value: str) -> Optional[int]: """Placeholder function since gender data not available""" return None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # List all files to check and get matrix file content print("All files in directory:") files = os.listdir(in_cohort_dir) for f in files: print(f) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs (gene/probe identifiers) print("\nFirst 20 gene/probe IDs:") print(genetic_data.index[:20].tolist()) # Since we found standard gene symbols in the matrix file, # we need to revise the earlier conclusion about methylation data is_gene_available = True # Save updated metadata with corrected gene availability info validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # These appear to be standard human gene symbols (HGNC symbols) # Examples like A2M, ABCF1, AKT1 are well-known human gene symbols # No mapping needed as they are already in the correct format requires_gene_mapping = False # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)