# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE244984" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE244984" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE244984.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE244984.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE244984.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # This is a melanoma study examining molecular patterns, likely has gene expression data is_gene_available = True # 2.1. Identify Data Availability # Trait (resistance) is available in row 1 trait_row = 1 # No age or gender data available age_row = None gender_row = None # 2.2. Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert resistance status to binary (0=CTLA4res, 1=PD1res)""" if not value or ':' not in value: return None value = value.split(':')[1].strip() if 'CTLA4res' in value: return 0 elif 'PD1res' in value: return 1 return None def convert_age(value: str) -> Optional[float]: """Convert age to float""" if not value or ':' not in value: return None try: age = float(value.split(':')[1].strip()) return age except: return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary (0=female, 1=male)""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'female' in value or 'f' in value: return 0 elif 'male' in value or 'm' in value: return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save to CSV os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical.to_csv(out_clinical_data_file) # List all files to check for gene expression data all_files = os.listdir(in_cohort_dir) print("All files in directory:") for f in all_files: print(f) # Since we found this is methylation data, and no other matrix file contains gene expression, # we need to revise our earlier assessment is_gene_available = False # Save updated metadata with corrected gene availability info validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) print("\nThis dataset contains methylation data rather than gene expression data.")