# Path Configuration from tools.preprocess import * # Processing context trait = "Melanoma" cohort = "GSE261347" # Input paths in_trait_dir = "../DATA/GEO/Melanoma" in_cohort_dir = "../DATA/GEO/Melanoma/GSE261347" # Output paths out_data_file = "./output/preprocess/3/Melanoma/GSE261347.csv" out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE261347.csv" out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE261347.csv" json_path = "./output/preprocess/3/Melanoma/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene expression data availability # Yes, according to the background info, it contains 1825 gene identifiers from Cancer Transcriptome Atlas is_gene_available = True # 2.1 Variable availability # Trait (resistance status) is in row 1 trait_row = 1 # Age and gender not available in characteristics age_row = None gender_row = None # 2.2 Data type conversion functions def convert_trait(value: str) -> int: """Convert resistance status to binary (0=CTLA4res, 1=PD1res)""" if not value or ':' not in value: return None value = value.split(':')[1].strip() if value == 'CTLA4res': return 0 elif value == 'PD1res': return 1 return None def convert_age(value: str) -> float: """Not used but defined for completeness""" return None def convert_gender(value: str) -> int: """Not used but defined for completeness""" return None # 3. Save metadata _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features since trait_row is available clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) print("\nSkipping gene data extraction step since this dataset contains methylation data rather than gene expression data.")