# Path Configuration from tools.preprocess import * # Processing context trait = "Mesothelioma" cohort = "GSE131027" # Input paths in_trait_dir = "../DATA/GEO/Mesothelioma" in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE131027" # Output paths out_data_file = "./output/preprocess/3/Mesothelioma/GSE131027.csv" out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE131027.csv" out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE131027.csv" json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = False # This dataset appears to focus on genetic mutations/variants rather than gene expression # 2. Clinical Data Availability and Conversion Functions # 2.1 Row numbers for data extraction trait_row = 1 # Cancer type information is in row 1 age_row = None # Age information not available gender_row = None # Gender information not available # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert cancer type to binary for Mesothelioma""" if pd.isna(x): return None if isinstance(x, str): x = x.split(": ")[-1] # Get value after colon if x == "Mesothelioma": return 1 else: return 0 return None # 3. Save Metadata - Initial Filtering is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait ) # Preview the processed data print("Preview of processed clinical data:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The IDs like "1007_s_at", "1053_at" etc. appear to be Affymetrix probe IDs # These need to be mapped to standard human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Get gene mapping using probe ID and gene symbol columns mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol') # Convert probe-level measurements to gene expression values gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the converted data print("Preview of mapped gene expression data:") print(gene_data.head()) print("\nShape:", gene_data.shape) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="" ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)