# Path Configuration from tools.preprocess import * # Processing context trait = "Mesothelioma" cohort = "GSE163721" # Input paths in_trait_dir = "../DATA/GEO/Mesothelioma" in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE163721" # Output paths out_data_file = "./output/preprocess/3/Mesothelioma/GSE163721.csv" out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE163721.csv" out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE163721.csv" json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Analysis is_gene_available = True # Background info indicates microarray data analysis # 2. Variable Analysis trait_row = 0 # All samples are tumor, indicating mesothelioma age_row = None # Age data not available gender_row = None # Gender data not available # 2.2 Conversion Functions def convert_trait(x): if not isinstance(x, str): return None if "tumor" in x.lower(): return 1 return None convert_age = None convert_gender = None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract Clinical Features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print("Preview of clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Examining the row IDs which are just numeric strings without any gene/probe identifiers # This indicates the need for mapping from probe IDs to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Extract gene mapping from annotation # 'ID' column in gene_annotation matches numeric IDs in gene expression data # 'Gene Symbol' column contains the target gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the mapped gene data print("\nMapped gene expression data shape:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Dataset contains only tumor samples without a control group, making it unsuitable for associational studies." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=True, # Force biased=True since all samples are tumor samples df=linked_data, note=note ) # 6. Save linked data only if usable (which won't happen since is_biased=True) if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)