# Path Configuration from tools.preprocess import * # Processing context trait = "Mesothelioma" cohort = "GSE163722" # Input paths in_trait_dir = "../DATA/GEO/Mesothelioma" in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE163722" # Output paths out_data_file = "./output/preprocess/3/Mesothelioma/GSE163722.csv" out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE163722.csv" out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE163722.csv" json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Study title indicates RERG expression analysis is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # All samples are tumor samples (constant trait), so trait data is not useful trait_row = None age_row = None # No age data gender_row = None # No gender data # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None value = x.split(": ")[-1].strip().lower() # Since trait data is constant, this function won't be used return None def convert_age(x): # Not needed since age data not available return None def convert_gender(x): # Not needed since gender data not available return None # 3. Save Metadata # is_trait_available is False since trait values are constant validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False) # 4. Clinical Feature Extraction # Skip since trait_row is None (constant trait values) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Reviewing gene identifiers: they appear to be simple row numbers # This suggests they are probe IDs rather than gene symbols # We need to map them to actual gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Looking at the gene identifiers, we need a different method to match them to gene data # Let's modify the annotation dataframe to add position indices gene_annotation['position'] = gene_annotation.index.astype(str) # Extract gene identifier column (position) and gene symbol column, with proper renaming mapping_data = gene_annotation[['position', 'gene_assignment']] mapping_data = mapping_data.rename(columns={'position': 'ID', 'gene_assignment': 'Gene'}) # Apply the mapping to get gene-level expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Normalize gene symbols by checking against a dictionary of gene synonyms gene_data = normalize_gene_symbols_in_index(gene_data) # Save the processed gene data gene_data.to_csv(out_gene_data_file) # Print the shape and preview the result print("\nFinal gene data shape:", gene_data.shape) print("\nPreview of final gene data:") print(preview_df(gene_data)) # Create minimal linked data with constant trait linked_data = gene_data.T linked_data['Mesothelioma'] = 1 # all samples are tumor linked_data = handle_missing_values(linked_data, 'Mesothelioma') # Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Mesothelioma') # Final validation note = "Dataset contains only tumor samples without control samples for comparison." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)