# Path Configuration from tools.preprocess import * # Processing context trait = "Mesothelioma" cohort = "GSE248514" # Input paths in_trait_dir = "../DATA/GEO/Mesothelioma" in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE248514" # Output paths out_data_file = "./output/preprocess/3/Mesothelioma/GSE248514.csv" out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE248514.csv" out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE248514.csv" json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes - background info shows nanoString nCounter platform was used for gene expression analysis is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 5 # progression-free at 6 months row age_row = None # age not available gender_row = 3 # gender row # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None val = str(x).split(': ')[-1].strip() if val == 'Yes': return 1 elif val == 'No': return 0 return None def convert_gender(x): if pd.isna(x): return None val = str(x).split(': ')[-1].strip() if val == 'Female': return 0 elif val == 'Male': return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=None, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The gene identifiers shown in the first 20 rows are already in standard human gene symbol format # (e.g., A2M, ABCF1, ACVR1C, etc). These are official HGNC gene symbols. # No mapping is required. requires_gene_mapping = False # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(genetic_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Dataset contains gene expression data from mesothelioma samples, but case/control ratio is heavily imbalanced." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)