# Path Configuration from tools.preprocess import * # Processing context trait = "Mesothelioma" cohort = "GSE64738" # Input paths in_trait_dir = "../DATA/GEO/Mesothelioma" in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE64738" # Output paths out_data_file = "./output/preprocess/3/Mesothelioma/GSE64738.csv" out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE64738.csv" out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE64738.csv" json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Dataset mentions Affymetrix microarrays for gene expression profiling is_gene_available = True # 2.1 Data Availability # From sample characteristics, trait status can be extracted from index 0 trait_row = 0 # Age and gender data not available in sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert cell type to binary trait - 1 for mesothelioma cell/xenograft, 0 for normal""" if not value: return None value = value.lower() if 'mesothelioma' in value: return 1 return None # No age/gender conversion functions needed since data not available convert_age = None convert_gender = None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features # Since trait_row is not None, proceed with feature extraction selected_clinical = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the selected features preview_df(selected_clinical) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Review the gene identifiers # The IDs have the format like "1007_s_at" which are Affymetrix probe IDs # These need to be mapped to human gene symbols for consistency requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Get gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Save gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Dataset contains gene expression data from mesothelioma samples, but case/control ratio is heavily imbalanced." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)