# Path Configuration from tools.preprocess import * # Processing context trait = "Mesothelioma" cohort = "GSE68950" # Input paths in_trait_dir = "../DATA/GEO/Mesothelioma" in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE68950" # Output paths out_data_file = "./output/preprocess/3/Mesothelioma/GSE68950.csv" out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE68950.csv" out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE68950.csv" json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # This dataset contains Affymetrix gene expression data (HT_HG-U133A array) is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (Mesothelioma) can be inferred from disease state trait_row = 1 # Age is not available in the characteristics data age_row = None # Gender is not available in the characteristics data gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert disease state to binary indicating if it's mesothelioma""" if value is None or ':' not in value: return None disease = value.split(': ')[1].lower() if 'mesothelioma' in disease: return 1 return 0 def convert_age(value: str) -> float: """Convert age value to float""" return None def convert_gender(value: str) -> int: """Convert gender value to binary""" return None # 3. Save Metadata # Conduct initial filtering and save cohort information validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Extract clinical features since trait_row is not None clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the clinical features preview = preview_df(clinical_features) print("Clinical features preview:", preview) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Based on the format of gene identifiers (e.g. "1007_s_at", "1053_at"), # these appear to be Affymetrix probe IDs rather than standard gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Extract gene mapping information from annotation data mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol') # Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print data shapes and preview print("Original probe data shape:", genetic_data.shape) print("Gene data shape:", gene_data.shape) print("\nFirst few rows of gene data:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving # Note explains why data was deemed unusable due to severe trait imbalance note = "Dataset contains gene expression data from cancer cell lines, but mesothelioma samples are too rare (0.75%) for reliable analysis." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=True, # Explicitly setting to True since proportion is <10% and count <5 df=linked_data, note=note ) # 6. Do not save linked data since trait distribution is biased if is_usable: linked_data.to_csv(out_data_file)