# Path Configuration from tools.preprocess import * # Processing context trait = "Mesothelioma" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Mesothelioma/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" # Select the matching directory for Mesothelioma cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Mesothelioma_(MESO)') # Get file paths clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the data clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Define candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Print candidate columns with simulated preview format print("Age columns preview:") print({"age_at_initial_pathologic_diagnosis": [""], "days_to_birth": [""]}) print("\nGender columns preview:") print({"gender": [""]}) # Select age column - age_at_initial_pathologic_diagnosis is in years, days_to_birth is more complex # So choose age_at_initial_pathologic_diagnosis as it's more straightforward age_col = "age_at_initial_pathologic_diagnosis" # Select gender column - only one option available gender_col = "gender" # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # 1. Extract and standardize clinical features selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) # 2. Normalize gene symbols in genetic data normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_genetic_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate and save cohort info note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) print(f"Linked data saved to {out_data_file}") print("Shape of final linked data:", linked_data.shape) else: print("Dataset was found to be unusable and was not saved")