# Path Configuration from tools.preprocess import * # Processing context trait = "Metabolic_Rate" cohort = "GSE106800" # Input paths in_trait_dir = "../DATA/GEO/Metabolic_Rate" in_cohort_dir = "../DATA/GEO/Metabolic_Rate/GSE106800" # Output paths out_data_file = "./output/preprocess/3/Metabolic_Rate/GSE106800.csv" out_gene_data_file = "./output/preprocess/3/Metabolic_Rate/gene_data/GSE106800.csv" out_clinical_data_file = "./output/preprocess/3/Metabolic_Rate/clinical_data/GSE106800.csv" json_path = "./output/preprocess/3/Metabolic_Rate/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Background info mentions microarray analysis on muscle biopsies, so gene data likely exists is_gene_available = True # 2. Variable Availability and Data Type Conversion # Metabolic rate (trait) can be inferred from fasting glucose, insulin & FFA measurements in rows 8,9,10 # Age data is in row 2, Gender in row 0 trait_row = 9 # Using insulin level as proxy for metabolic rate since title mentions insulin resistance age_row = 2 gender_row = 0 def convert_trait(value): # Extract numeric insulin value after colon as continuous trait try: return float(value.split(': ')[1]) except: return None def convert_age(value): # Extract numeric age value after colon try: return float(value.split(': ')[1]) except: return None def convert_gender(value): # Convert gender to binary (female=0, male=1) try: gender = value.split(': ')[1].lower() if gender == 'male': return 1 elif gender == 'female': return 0 return None except: return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Based on the gene identifiers shown (e.g., '16650001', '16650003', etc.), # these appear to be probe IDs from a microarray platform rather than human gene symbols. # They need to be mapped to standard gene symbols for analysis. requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # From inspection, 'ID' stores gene identifiers matching those in expression data, # and 'gene_assignment' contains gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply mapping to convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview results print("Gene expression data shape:", gene_data.shape) print("\nFirst 5 gene symbols:", gene_data.index[:5]) print("\nPreview of expression values:") print(gene_data.head()) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)