# Path Configuration from tools.preprocess import * # Processing context trait = "Metabolic_Rate" cohort = "GSE40589" # Input paths in_trait_dir = "../DATA/GEO/Metabolic_Rate" in_cohort_dir = "../DATA/GEO/Metabolic_Rate/GSE40589" # Output paths out_data_file = "./output/preprocess/3/Metabolic_Rate/GSE40589.csv" out_gene_data_file = "./output/preprocess/3/Metabolic_Rate/gene_data/GSE40589.csv" out_clinical_data_file = "./output/preprocess/3/Metabolic_Rate/clinical_data/GSE40589.csv" json_path = "./output/preprocess/3/Metabolic_Rate/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Yes, based on Series_title and Series_summary describing gene expression in adipose tissue # 2. Variable Availability and Row Identification trait_row = None # Metabolic rate not available in sample characteristics age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(x): return None # Not used since trait data not available def convert_age(x): return None # Not used since age data not available def convert_gender(x): return None # Not used since gender data not available # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Skip since trait_row is None # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # These identifiers start with 'A_23' indicating they are Agilent array probe IDs # They need to be mapped to human gene symbols for proper analysis requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Create mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print first few rows and shape to verify mapping worked print("Gene expression data after mapping:") print(gene_data.head()) print("\nShape after mapping:", gene_data.shape) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # Since we lack clinical data, use initial validation to filter out the dataset is_usable = validate_and_save_cohort_info( is_final=False, # Initial validation for filtering out datasets lacking required data cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False )