# Path Configuration from tools.preprocess import * # Processing context trait = "Metabolic_Rate" cohort = "GSE41168" # Input paths in_trait_dir = "../DATA/GEO/Metabolic_Rate" in_cohort_dir = "../DATA/GEO/Metabolic_Rate/GSE41168" # Output paths out_data_file = "./output/preprocess/3/Metabolic_Rate/GSE41168.csv" out_gene_data_file = "./output/preprocess/3/Metabolic_Rate/gene_data/GSE41168.csv" out_clinical_data_file = "./output/preprocess/3/Metabolic_Rate/clinical_data/GSE41168.csv" json_path = "./output/preprocess/3/Metabolic_Rate/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # The background indicates this is a gene expression study involving muscle and adipose tissue # 2.1 Data Availability trait_row = None # Metabolic rate data is described in background but not given in characteristics age_row = None # Age is not available in characteristics gender_row = 3 # Gender information is in row 3 # 2.2 Data Type Conversion Functions def convert_trait(x): return None # Not used since trait data not available def convert_age(x): return None # Not used since age data not available def convert_gender(x): if not isinstance(x, str): return None x = x.lower().split(': ')[-1].strip() if 'female' in x: return 0 elif 'male' in x: return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip since trait_row is None # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # These are probe IDs from Affymetrix arrays (_at suffix is typical for Affy probes) # They need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Get gene mapping dataframe mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Convert probe-level measurements to gene expression data using the mapping gene_data = apply_gene_mapping(genetic_data, mapping_data) print("Gene data shape:", gene_data.shape) print("\nPreview of gene data:") print(preview_df(gene_data)) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) # Create a simple dataframe just for validation since no trait data available df = pd.DataFrame({'no_trait': [0]}) # Since clinical data was not available (trait_row was None), mark dataset as unusable note = "Contains gene expression data but no metabolic rate measurements" validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Set to True since dataset lacks trait data df=df, note=note ) # No linked data saved since trait data was unavailable