# Path Configuration from tools.preprocess import * # Processing context trait = "Migraine" cohort = "GSE67311" # Input paths in_trait_dir = "../DATA/GEO/Migraine" in_cohort_dir = "../DATA/GEO/Migraine/GSE67311" # Output paths out_data_file = "./output/preprocess/3/Migraine/GSE67311.csv" out_gene_data_file = "./output/preprocess/3/Migraine/gene_data/GSE67311.csv" out_clinical_data_file = "./output/preprocess/3/Migraine/clinical_data/GSE67311.csv" json_path = "./output/preprocess/3/Migraine/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # From background info, this dataset contains whole blood gene expression data using Affymetrix arrays is_gene_available = True # 2.1 Data Availability # Trait (Migraine) data is available in row 4 trait_row = 4 # Age is not available in the sample characteristics age_row = None # Gender is not available in the sample characteristics gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): if pd.isna(value): return None # Extract value after colon and strip whitespace value = value.split(':')[1].strip() # Convert to binary where Yes=1, No=0, missing=None if value == 'Yes': return 1 elif value == 'No': return 0 return None def convert_age(value): return None # Not used since age data not available def convert_gender(value): return None # Not used since gender data not available # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features selected_clinical = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the extracted features print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The IDs appear to be identifiers that need mapping - they are numeric codes starting with "789" likely from a microarray # These are not standard human gene symbols like BRCA1, TP53, etc. # Based on the numeric format and length, these look like Illumina BeadArray probe IDs requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Display column names and preview data print("Column names:") print(gene_annotation.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_annotation)) # Get mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(expression_df=genetic_data, mapping_df=mapping_data) # Normalize gene symbols using the NCBI synonym information gene_data = normalize_gene_symbols_in_index(gene_data) # Preview results print("Gene-level expression data shape:", gene_data.shape) print("\nFirst 5 genes and their values across first 3 samples:") print(gene_data.iloc[:5, :3]) # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)